
未来是拼出来的为您分享以下优质知识
关于数学桌椅的价格问题,根据不同的条件,可以通过列方程或逻辑推理来解答。以下是几种常见的解题方法:
一、基础代数法(适用于多个条件问题)
一凳一椅共70元
设凳子单价为$x$元,椅子单价为$y$元,则有方程:
$$x + y = 70 quad text{(1)}$$
补充条件:三凳二椅共160元
$$3x + 2y = 160 quad text{(2)}$$
解法:将(1)式乘以3得:
$$3x + 3y = 210 quad text{(3)}$$
用(3)式减去(2)式:
$$y = 50 quad text{(椅子单价)}$$
代入(1)式得:
$$x = 20 quad text{(凳子单价)}$$
答案:凳子20元,椅子50元。
二、比例法(适用于单价比例明确的问题)
1张桌子=3把椅子
设桌子单价为$3x$元,椅子单价为$x$元。 补充条件:4张桌子和9把椅子共252元
$$4(3x) + 9x = 252$$
$$12x + 9x = 252$$
$$21x = 252$$
$$x = 12 quad text{(椅子单价)}$$
$$3x = 36 quad text{(桌子单价)}$$
答案:桌子36元,椅子12元。
三、差倍问题(适用于价格差与倍数关系明确的问题)
2张桌子=3把椅子,总价600元
设桌子单价为$y$元,椅子单价为$x$元,则:
$$2y = 3x quad text{(1)}$$
$$y + x = 600 quad text{(2)}$$
由(1)得:
$$y = frac{3}{2}x$$
代入(2)式:
$$frac{3}{2}x + x = 600$$
$$frac{5}{2}x = 600$$
$$x = 240 quad text{(椅子单价)}$$
$$y = 360 quad text{(桌子单价)}$$
答案:桌子360元,椅子240元。
四、极端值法(适用于价格范围有限的问题)
课桌椅总价在1850-1900元之间
设桌子单价为$a$元,椅子单价为$b$元,则:
$$25a + 30b = 1850 quad text{(1)}$$
$$30a + 20b = 1900 quad text{(2)}$$
通过消元法解得:
$$a = 320, quad b = 32 quad text{(符合总价范围)}$$
答案:桌子320元,椅子32元。
总结
根据具体条件选择合适的方法:
多个等式联立:代数法
单价比例明确:比例法
差倍关系:差倍问题法
价格范围有限:极端值法
建议结合题目中的条件,选择最合适的方法进行解答。