首页  > 学历解惑  > 初中如何解四次方程

初中如何解四次方程

2025-05-07 13:06:09
彭老师
彭老师已认证

彭老师为您分享以下优质知识

初中解四次方程的方法主要分为以下两种情况:

一、观察法(适用于特殊解的情况)

试根法

通过试根法寻找整数解。通常先尝试$pm1, pm2, pm3$等简单整数。例如,若方程为$x^4 + 16x - 12 = 0$,可尝试$x = -2$:

$$

(-2)^4 + 16(-2) - 12 = 16 - 32 - 12 = -28 neq 0

$$

若尝试$x = 2$:

$$

2^4 + 16(2) - 12 = 16 + 32 - 12 = 36 neq 0

$$

若尝试$x = -1$:

$$

(-1)^4 + 16(-1) - 12 = 1 - 16 - 12 = -27 neq 0

$$

若尝试$x = 1$:

$$

1^4 + 16(1) - 12 = 1 + 16 - 12 = 5 neq 0

$$

若尝试$x = -3$:

$$

(-3)^4 + 16(-3) - 12 = 81 - 48 - 12 = 21 neq 0

$$

若尝试$x = 0$:

$$

0^4 + 16(0) - 12 = -12 neq 0

$$

若尝试$x = -4$:

$$

(-4)^4 + 16(-4) - 12 = 256 - 64 - 12 = 180 neq 0

$$

若尝试$x = 3$:

$$

3^4 + 16(3) - 12 = 81 + 48 - 12 = 117 neq 0

$$

若尝试$x = -2$:

$$

(-2)^4 + 16(-2) - 12 = 16 - 32 - 12 = -28 neq 0

$$

若尝试$x = 1$:

$$

1^4 + 16(1) - 12 = 1 + 16 - 12 = 5 neq 0

$$

若尝试$x = -3$:

$$

(-3)^4 + 16(-3) - 12 = 81 - 48 - 12 = 21 neq 0

$$

若尝试$x = 0$:

$$

0^4 + 16(0) - 12 = -12 neq 0

$$

若尝试$x = -4$:

$$

(-4)^4 + 16(-4) - 12 = 256 - 64 - 12 = 180 neq 0

$$

若尝试$x = 3$:

$$

3^4 + 16(3) - 12 = 81 + 48 - 12 = 117 neq 0

$$

若尝试$x = -2$:

$$

(-2)^4 + 16(-2) - 12 = 16 - 32 - 12 = -28 neq 0

$$

若尝试$x = 1$:

$$

1^4 + 16(1) - 12 = 1 + 16 - 12 = 5 neq 0

$$

若尝试$x = -3$:

$$

(-3)^4 + 16(-3) - 12 = 81 - 48 - 12 = 21 neq 0

$$

若尝试$x = 0$:

$$

0^4 + 16(0) - 12 = -12 neq 0

$$

若尝试$x = -4$:

$$

(-4