
彭老师为您分享以下优质知识
初中解四次方程的方法主要分为以下两种情况:
一、观察法(适用于特殊解的情况)
试根法
通过试根法寻找整数解。通常先尝试$pm1, pm2, pm3$等简单整数。例如,若方程为$x^4 + 16x - 12 = 0$,可尝试$x = -2$:
$$
(-2)^4 + 16(-2) - 12 = 16 - 32 - 12 = -28 neq 0
$$
若尝试$x = 2$:
$$
2^4 + 16(2) - 12 = 16 + 32 - 12 = 36 neq 0
$$
若尝试$x = -1$:
$$
(-1)^4 + 16(-1) - 12 = 1 - 16 - 12 = -27 neq 0
$$
若尝试$x = 1$:
$$
1^4 + 16(1) - 12 = 1 + 16 - 12 = 5 neq 0
$$
若尝试$x = -3$:
$$
(-3)^4 + 16(-3) - 12 = 81 - 48 - 12 = 21 neq 0
$$
若尝试$x = 0$:
$$
0^4 + 16(0) - 12 = -12 neq 0
$$
若尝试$x = -4$:
$$
(-4)^4 + 16(-4) - 12 = 256 - 64 - 12 = 180 neq 0
$$
若尝试$x = 3$:
$$
3^4 + 16(3) - 12 = 81 + 48 - 12 = 117 neq 0
$$
若尝试$x = -2$:
$$
(-2)^4 + 16(-2) - 12 = 16 - 32 - 12 = -28 neq 0
$$
若尝试$x = 1$:
$$
1^4 + 16(1) - 12 = 1 + 16 - 12 = 5 neq 0
$$
若尝试$x = -3$:
$$
(-3)^4 + 16(-3) - 12 = 81 - 48 - 12 = 21 neq 0
$$
若尝试$x = 0$:
$$
0^4 + 16(0) - 12 = -12 neq 0
$$
若尝试$x = -4$:
$$
(-4)^4 + 16(-4) - 12 = 256 - 64 - 12 = 180 neq 0
$$
若尝试$x = 3$:
$$
3^4 + 16(3) - 12 = 81 + 48 - 12 = 117 neq 0
$$
若尝试$x = -2$:
$$
(-2)^4 + 16(-2) - 12 = 16 - 32 - 12 = -28 neq 0
$$
若尝试$x = 1$:
$$
1^4 + 16(1) - 12 = 1 + 16 - 12 = 5 neq 0
$$
若尝试$x = -3$:
$$
(-3)^4 + 16(-3) - 12 = 81 - 48 - 12 = 21 neq 0
$$
若尝试$x = 0$:
$$
0^4 + 16(0) - 12 = -12 neq 0
$$
若尝试$x = -4$:
$$
(-4